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Optimality of the minimum VaR portfolio using CVaR
as a risk proxy in the context of transition to Basel Ill:
methodology and empirical study

Abstract. The transition to the new standards in risk management announced by the Basel Committee (Basel Ill) leads to a
change in the instrument of portfolio risk calculation. Such a transition, in particular, may lead to a loss of optimality of already
formed portfolios and consequently to the necessity of portfolio restructurization. It should be noted that the process of portfolio
restructurization is often quite costly not only in terms of financial costs but also in terms of time consuming. Therefore, an actual
problem is the construction of tools that confirm the necessity of portfolio restructurization and, consequently, the expediency
of investing resources in this process. Different statistical tests are often used to solve this problem. We are interested in tests
for significance of the differences between the main characteristics of optimal portfolios obtained under different risk measures,
in our case VaR and CVaR.

The paper suggests a method for testing the minimum VaR portfolio for optimality in the case when CVaR is used as a measure for
risk calculation. Sample estimators of two differences between the expected returns of the minimum VaR and the minimum CVaR
portfolios and between the corresponding coefficients of investor risk aversion are considered. The asymptotic distributions of
these estimates are provided.

For empirical research, we select the daily returns of assets from the Dow Jones Industrial Average (DJIA) list that contains
information on the prices of assets of 30 companies for the period from 01.September 2017 to 31. August 2018 (a total of
252 observations). We provide the Kolmogorov-Smirnov test about the normality of distribution of all the 30 asset returns,
and for our analysis we choose only those assets for which the null hypothesis cannot be rejected at the 5% level of
significance. We got 10 assets: the Coca-Cola Company; the Walt Disney Company; the Boeing Company; Johnson &
Johnson; the Goldman Sachs Group; Apple Inc.; the Home Depot Inc.; Verizon Communication Inc.; UnitedHealth Group;
DowDuPont Inc.

Using simulation studies based on empirical data, we show that empirical distributions of the sample estimator of the difference
between the expected returns of the minimum VaR and the minimum CVaR portfolios even for a small number of assets in
portfolio (k=5) are significantly asymmetric and biased, and their convergence rate to the asymptotic distribution is rather slow.
Instead, the properties of the sample estimator of the difference between the corresponding coefficients of investor risk aversion
are significantly better. Moreover, an adjusted estimator for this difference is constructed. It is shown that for this estimator the
convergence rate of empirical variances to the asymptotic one is slightly slower than for sample estimator while the empirical
biases are close to zero. This fact justifies the possibility of using this estimator in practice.
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MONEY, FINANCE AND CREDIT

AHoTauif. Y po6oTi 3anponoHOBaHO MeETOf, TeCTyBaHHA nopTdens (iHaHCOBUX akTuBiB 3 HaiMeHWum piBHem VaR Ha
ONTMMAaNbHICTb 3@ YMOBW, LLIO OCHOBHOIO MipOto A1 o64ncneHHs puaukie € CVaR. Po3rnaHyTo BMGIpPKOBI OLiHKM OBOX Pi3HMLb
Mi>K OYiKyBaHUMK JOXigHOCTAMKU nopTdenis 3 HanmMeHwnm pisHem VaR Ta CVaR Ta koediuieHTamu, Wo onncyoTb CTaBAEeHHS
iHBECTOpPAa 00 PM3KKY, L0 BiANoBigaoTb UM nopTdensm. 3HangeHo acuMnTOTUYHI PO3NOAiNm LMx OLiHOK. Ha oCHOBI eMnipuyHnx
OaHUX MnokasaHo, WO eMnipuyHMM po3nofinaMm BUGIPKOBOI OLHKM PI3HWLI MK O4iKyBaHUMKU AoxigHOCTAMW nopTdenis 3
HanmeHwum pisHeM VaR Ta CVaR HaBiTb Npu HEBENUKIN KinbkOCTi akTueiB y noptdeni (k = 5) nputamaHHi icTOTHI acnumeTpis
Ta 3MilleHHs1, a 36DKHICTb X A0 aCUMNTOTUYHOIO PO3NOLiNYy € AOBONI MOBINbHOK. HaToMICTb BNacTUBOCTI BUGIPKOBOI OLLIHKM
Pi3HMLI MiXK KoediLjieHTamu, Lo OMNMCYIOTb CTaBNEHHS iHBECTOPa A0 PU3NKY, LLIO BignosigaoTb NOpTdensM 3 HaIMEHLLUM PiBHEM
VaR T1a CVaR, € 3Ha4Ho Kpawwmmu. Kpim Toro, B po60Ti 3anponoHOBaHO BUMNPaBeHy OLIHKY AN L€l pisHuLi, Ans sIKoi 36i>KHICTb
eMNipMYyHMX ANCNEPCi A0 aCUMMNTOTUYHOI OEeLo CNoBilbHMNACS; HATOMICTb eMMiPUYHI 3MILLEHHSA € 6NU3bKNMK A0 Hyns, Lo
OOI'PYHTOBYE AOLiNBHICTb BUKOPUCTAHHSA LET OLIHKM Ha NPaKTuL.

KnioyoBi cnoBa: mipa pusuky; Value-at-Risk; ymoBHe Value-at-Risk; onTumansHuin noptdens; odikyBaHa AoxXigHICTb nopTdens;
BMNOIpKOBa OLiHKa; KoediLlieHT, Lo ONMCye CTaBNeHHS iHBeCTOopa A0 PU3MKY.
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OnTumanbHoCTb NopTdens hMHAHCOBbIX aKTUBOB C HaMMeHbLMM ypoBHeM VaR npu ucnonb3osaHune mepbli CVaR

AJS UCHUCNIEHNSA PUCKA B KOHTEKCTe nepexopa Ha kputepun Basens Ill: MmeTogonorus n amnupu4yeckoe nccnegoBaHue
AHHOTauumsa. B paboTte npenfnioxkeH MeTof TeCTUPOBaHUS NopTdens (PUHAHCOBLIX aKTVBOB C HavMeHbLM ypoBHeM VaR Ha
ONTUMaNbHOCTb MPW YCIOBUN, YTO OCHOBHOW MEepoi NS BblMCNeHUs puckoB siBnsietca CVaR. PaccMoTpeHbl BbIGOpOUHbIEe
OLEHKM ABYX Pa3HUL, MEXXAY 0XXMAAEMbIMU LOXOAHOCTSAMM NOPTdENeit ¢ HanMeHbLWM ypoBHeM VaR n CVaR n koadduumeHTamu,
ONMCbiBaOLWNMY OTHOLLEHWE WHBECTOpa K PUCKY, COOTBETCTBYIOWIME 3TUM nopTdensm. HaigeHbl acuMmnToTnyeckune
pacnpefeneHns 9TUX OUEHOK. Ha OocCHOBEe 3MMMPUYECKUX [aHHbIX MOKa3aHOo, YTO 3MMUPUYECKMM pacnpeneneHnsm
BbIGOPOYHOW OLEHKWN pasHuLbl MeXOy OXugaeMbiMU JOXOAHOCTAMM nopTdenei ¢ HaumeHswM yposHeM VaR n CVaR pgaxe
npv He6ONbLLIOM KONNYeCTBe akTMBOB B nopTdene (k = 5) NpucyLLy CyLLeCTBEHHbIE aCUMMETPUSA U CMELLEHNS, a CXOANMOCTb
UX K aCMMMNTOTUYECKOMY pacrpeneneHnio eCTb JOBOSIbHO Me4J/IeHHOW. 3aTO CBOWCTBAa BbIGOPOYHOW OLEHKN pasHuLbl MexXay
koadduLmeHTamu, ONUChIBAIOLLMMN OTHOLLIEHNE MHBECTOPA K PUCKY, COOTBETCTBYIOLLMM NOPTMhENsSM ¢ HaMeHbLUVM YPOBHEM
VaR u CVaR, 3HauutensHo ny4dwe. Kpome Toro, B paboTe npenfioxXeHa McrpaBfieHHas oueHKa Ans pasHuubl, Ans KOTOpoW
CXOAUMOCTb SMMMPUYECKNX UCNEPCUIN K aCMNTOTUHECKON HECKOBLKO 3aMeannnack. BmecTe ¢ TeM amnmpuyeckoe cmeLleHne
65IM3KO K HYM0, YTO 0BGOCHOBLIBAET LIENECO06pasHOCTb UCTONB30BaHNS 3TOM OLEHKMN Ha MPaKTuKe.

KnroueBble cnoBa: Mepa pucka; Value-at-Risk; ycnosHoe Value-at-Risk; ontumanbHbii nopTdenb; oxmaaemas 0OXOQHOCTb

nopTcensi; BbI6OPOYHas oLeHKa; KO3MULMEHT, ONUCbIBAIOLLNIA OTHOLLEHWE HBECTOPA K PUCKY.

1. Introduction

Every financial institution planning its own activity faces
the problem of financial risk estimation. From the theory and
practice of finance, it is well known that investments in one
asset are rather risky and the risk estimation process for each
asset takes a lot of time. Therefore, financial asset portfolios
are often used in practice.

2. Brief Literature Review

Markowitz’s approach to portfolio construction (Marko-
witz, 1952) is not the only method of choosing an optimal port-
folio structure. For example W. Sharpe (1994) described the
method of portfolio constructing based on the Sharpe ratio
maximization. It is easy to show that the resulting portfolio lies
on the efficient frontier. The main disadvantage of this method
is that mathematical expectation for the sample estimator of
the portfolio weights with the maximum Sharpe ratio does not
exist. In addition, it is shown (Schmid & Zabolotskyy, 2008)
that it is impossible to construct an unbiased estimator for the
given portfolio. This fact causes certain warnings concerning
practical use of this portfolio. Y. Okhrin and W. Schmid (2006)
considered a method for portfolio constructing based on the
portfolio expected utility function maximization. The problem
of determining the investor’s risk aversion is one of the main
drawbacks of this method. In spite of this, maximum expected
utility optimal portfolios are widely used.

Most works on optimal portfolio construction use port-
folio variance as a risk proxy. However, such a choice of
risk measure is not optimal, since variance has several
important disadvantages. In recent years, a risk measure
Value-at-Risk (VaR) became very popular for calculating
portfolio risk. The advantage of VaR over variance is that
VaRis a quantile-based risk measure (Krokhmal et al., 2011)
and therefore it takes into account only the positive values
of the loss function (negative values of asset returns), so the
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probability of high profits does not affect the risk of loss.
G. Alexander and M. Baptista (2002) suggested using VaR
as a risk proxy in the portfolio theory.

At the end of the last century, P. Artzner et al. (1999)
formulated four main properties of coherence, which risk
measures should satisfy. These properties are monotonici-
ty, sub-additivity, homogeneity and translational invariance.
VaR is not sub-additive in the general case (Pflug, 2000). As
a result, it may happen that the total risk of two assets can
be greater than the sum of the risks of these assets. This
fact leads to a contradiction with the basic rule of portfolio
theory: the use of diversification never leads to higher risks.
Another drawback of VaR is that it is not convex in the case
of discrete distributed asset returns and, consequently, it
can have many local extremes (Kyshakevych, 2012).

Obviously, the Artzner’s axioms do not describe a single
risk measure. There are several coherent risk measures, but
one of the most famous is the so-called conditional VaR (CVaR),
which is a generalization of VaR. G. Pflug (2000) proved that
CVaR satisfies all conditions of coherence. G. Alexander and
M. Baptista (2004) showed that the minimum CVaR portfolio
lies on the efficient frontier or, in other words, is efficient by
Markowitz. The expected return of this portfolio lies between
the expected return of the global minimum variance portfolio
and the expected return of the minimum VaR portfolio under
the assumption that asset returns are independent and nor-
mally distributed. The main drawback of CVaR is that it is not
always possible to calculate its value. For example, assuming
that the return of some financial asset follows the Cauchy dis-
tribution, we get that CVaR cannot be definite for such an as-
set. It is obvious that VaR is free from such a disadvantage.

It should be pointed out that VaR has some advantages
over CVaR in terms of practical application in spite of all the
above-mentioned disadvantages. In particular, calculating



CVaR is more laborious procedure (Chatterjee, 2014, Saryka-
lin et al., 2008) than calculating VaR. Moreover, VaR is more ro-
bust than CVaR, and CVaR evaluation procedure requires much
more data and is much more sensitive to estimation error than
VaR. In addition, the result of a CVaR calculation is reliable on-
ly if a correct model is used to describe the distribution tails.

The transition to Basel Il in risk management leads to a
change in the instrument of portfolio risk calculation. Such a
transition, in particular, may lead to a loss of optimality of al-
ready formed portfolios and consequently to the necessity of
portfolio restructurization. It should be noted that the process
of portfolio restructurization is often quite costly not only in
terms of financial costs but also in terms of time consuming.
Therefore, an actual problem is the construction of tools that
confirm the necessity of portfolio restructurization and, con-
sequently, the expediency of investing resources in this pro-
cess. Different statistical tests are often used to solve this prob-
lem. We are interested in tests for significance of the differen-
ces between the main characteristics of optimal portfolios ob-
tained under different risk measures in our case VaRand CVaR.

3. Purpose

The purpose of the paper is a probabilistic analysis of the
estimators of differences between the portfolio characteristics
with structures derived under risk measures VaRand CVazRand
construction of statistical tests for testing the significance of
values of these differences based on this analysis.

4, Theoretical background

An important step before portfolio construction is the
choice of a risk measure to calculate portfolio risks. The most
popular risk measures are variance, VaR and CVaR. Let us con-
sider them in more detail.

Let P be the price of some financial asset at the time
point . We define the return of this asset as follows:
X, = 100In (P,/ P_). The main properties of log returns can
be found in (Fan & Yao, 2015).

By the mid-1990s, the variance was the basis for the risk
calculation. Nowadays, it is considered that better measures
for practical use are measures that calculate the risk based
on the corresponding quantiles of the loss function (Krokhmal
et al.,, 2011). The most popular and most commonly used
measures are Value-at-Risk (VaR) and its extension to a co-
herent measure - Conditional Value-at-Risk (CVaR).

Let us include k assets in the portfolio. Denoted by
X, = (X,p X, ..., X,, ), the k -dimensional vector of asset re-
turns is included in the portfolio. The fraction of i -th asset in
a portfolio is denoted by w, and the portfolio - the vector of
fractions w = (w,, w,, ..., w, ). We assume that the vector X, fol-
lows a k -dimensional normal distribution with the mean vec-
tor E(X ) = u and covariance matrix £ = D(X,). The main cha-
racteristics of the portfolio can be calculated as follows: ex-
pected return R =E(X )=w'w, variance V, =D(X ) =w2w,
where X - portfolio return at time point . Note that the as-
sumption of normality of the distribution of the asset returns
vector X, is one of the main in the classical portfolio theory.
Despite criticism of this assumption in recent decades, it is
often used not only in practice, but also in theoretical works.
This is because the normal distribution has attractive theore-
tical properties: consistency with the classical portfolio theory
and with the assumptions of CAPM; the equivalence of the
rules of decision-making in one and many periodic cases
(Markowitz, 1991). In addition, for low-frequency returns, for
example, monthly and annual asset returns, the assumption
of normality of their distribution, are consistent with practical
observation (Fama, 1976). Moreover, the calculating methods
for VaR in Basel Il or CVaR in Basel lll are based on the as-
sumption that asset returns are normally distributed.

An important role in portfolio theory plays unconditio-
nal with respect to the portfolio expected return minimization
problem of portfolio variance:

k
V= W'Zw — min with respect to D .w; =1 . (1)

i=1

The solution of the problem (1) can be written in the fol-
lowing form:

MONEY, FINANCE AND CREDIT

b |
Warn :1,241 5 (2)

where:

1 - k-dimensional vector of ones.

The portfolio of financial assets with the structure w,  is
commonly used in the financial literature. It is known as the
global minimum variance (GMV) portfolio. The characteristics
of this portfolio can be calculated from:

1yl
Rouy :% — expected return, Vg, =ﬁ — variance . (3)

The structure of the minimum VaR portfolio is observed
from the following optimization problem (Alexander & Baptis-
ta, 2002):

k
VaR(w) = z,N'W'EW — W'l — min with respect to D w; =1. 4)

i=l

It should be noted that we do not impose the condition of
positive portfolio weights as in the case of the GMV portfolio.
G. Alexander and M. Baptista (2002) solved the problem (4).
The minimum VaR portfolio structure and its characteristics
using our denotation can be written:

\V(,'u[' R

2 _
Z, =S

Wyar =Wemy +

s Q)

— _
Ryag = W'yag W= Ry +

———\Vour - (6)

—_ ' — a
Viar =W'yar ZW i = e B Vo s (7)
z, —

My, = Vzcz( =s\Vour —Reuw (8)

where:
M, denotes the VaR of portfolio with the structure w_,,

_r'ux?!

R=x" :
1z

, s=uRp.

The necessary and sufficient condition to solve the prob-
lem (4) is:

<7 ©)

T. Bodnar et al., 2012 analyzed the condition (9) using the
data on daily stock prices from the Dow Jones list and showed
that at statistically reasonable confidence levels (o = 0.9) an
investor has a possibility to construct the minimum VaR port-
folio with high probability (> 0.999).

Using CVaR as a risk proxy, the problem of the minimum
CVaR portfolio construction has the form (Alexander & Bap-
tista, 2004):

k
CVaR(w) k,W'EZW —wW'pn — min with respect to D w; =1. (10)

i=1

G. Alexander and M. Baptista (2004) proved that s < k2 is
the necessary and sufficient condition for the existence of
the solution of the problem (10). It can be easily shown that
we get k. >z in the case of continuous distributions of as-
set returns. This implies that the minimum CVaR portfolio can
be constructed when the minimum VaR portfolio can be con-
structed with the same assets.

G. Alexander and M. Baptista,(2004) presented the weights
and the characteristics of the minimum CVaR portfolio:

\ V(WIV R,

2
o S

. (11)

Wevar =Weny +
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W _
Revar =W evar 0= Ry +

k: ’\/V(.'wr > (1 2)

a

-
Vevar =W'cvar EW cpar =

M('VUR = Vk; -5 V(iMl" - R(IMV ’ (1 4)

Since 2>z
we get R( MV RCW:R < VaR
for all acceptable values of a < 1.
with minimal risk coincide for o = 1.

In 2019, Basel Il should be finally implemented. The impor-
tant difference between Basel Il and Basel lll is the proposed
risk measures. In Basel Il recommendations, VaR is a risk proxy
instead of Basel lll - CVaR. For continuous distributions at the
same level of confidence, the value of CVaR is greater than the
value of VaR. The question arises: how the expected returns of
the minimum VaR and the minimum CVaR portfolios differ at the
same confidence level. From (6) and (12), we obtain:

_V(;m' ’ (1 3)

for every confidence level a satisfies (9),
Moreover, the inequalities are strict
Instead, all the portfolios

A=Ry, - R

~ Reyar =

S S
=Ra +37V Vosw = Ry + 5 N Vo =
NEME Vk, =s (15)
1 1
=Sy Vm/r [,— - W—/i}
z, =5 k,—s

Note that the equality (15) remains correct under the as-
sumption that vector of asset returns X, follows the k-dimen-
sional conditional normal distribution with the parameters u,
and X .

The universal method for the efficient frontier construction
is the method of maximization of the portfolio expected utility.
In the portfolio theory, the portfolio with expected quadratic
utility is determined as follows:

U(W)=R, ,gﬂ :

where p denotes the coefficient of investor’s risk aver-
sion. We get the weights of the optimal portfolio with the ma-
ximum expected quadratic utility from the following optimiza-
tion problem:

k
U(w) — max with respect to > w, =1.
i=1

They can be written as follows:

7\

+/ Ry . (16)

wl,(

iz

Y. Okhrin and W. Schmid (2006) pointed out that by
changing values of investor’s risk aversion coefficient from
0 to +o0 we can get an arbitrary portfolio from Markowitz’s
efficient frontier. G. Alexander and M. Baptista (2004)
proved that the minimum VaR and the minimum CVaR port-
folios are efficient by Markowitz. It means that it is possible
for investors who construct their portfolio by its risk mini-
mization to define the risk aversion coefficient (Das et al,
2010, Alexander & Baptista, 2011). We are interested on-
ly in cases when VaR and CVaR are used as risk measures.
Equating the expressions for the minimum VzR and the
minimum CVaR portfolio weights (5) and (11) with
the weights of the maximum expected utility portfo-
lio (16) and solving the equation with respect to cor-
responding coefficients of investor’s risk aversion
we get the following:

e for investors who constructs their portfolio by VaR

e for investors who construct their portfolio by CVaR minimiza-
tion, the risk aversion coefficient is equal to:

5 k-
o \Y V(i'til' ‘

Hence, the difference between the presented above coeffi-
cients of investor’s risk aversion is equal to

W= E=). (17)

( M

We have shown that changing the risk proxy from VaR to
CVaR with the same confidence level we get different mini-
mum risk portfolios. However, the Basel |l and Basel lll re-
commendations suggest different confidence levels for risk
measures. For VaR the recommended level is 99% while for
CVaRit is 99.9%. It should be noted that such a high confi-
dence level for CVaR causes a negative reaction from prac-
titioners. In a general case, we agree with such a reaction
because we could not find any reasonable explanation of
the choice of the confidence level for CVaR. From inves-
tors’ point of view the new confidence level for CVaR should
satisfy the following: the minimum CVaR portfolio with a
new confidence level should be equivalent to the minimum
VaR portfolio with a = 99%. We will find a relation between
confidence levels for VaR and CVaR under which the cor-
responding portfolios with the minimal risk are equivalent.
Since portfolios with the minimum VaR and the minimum
CVaR are efficient by Markowitz, the necessary and suffi-
cient condition for these portfolios to be equivalent is the
coincidence of their expected returns. Consequently, by
equating (6) and (12) we get that for a certain confidence
level for VaR the confidence level for CVaR should satisfy the
following equation:

_:2 2
acvar | =

=g 1o

The equation (18) could not be solved analytically with re-
spect to the confidence level for CVaR. We use the values for
confidence level a  , which are commonly used in practice,
namely {0.9, 0.95, 0 99 0.999} and solve (18) with respect to

Oy The results are presented in Table 1.

The results in Table 1 show us that under our assump-
tion of equivalence of portfolios with the minimal risk we
need to reduce the confidence level for CVaR, that is, increa-
sing accuracy in risk treatment decreases its confidence. For
example, to get equivalent the minimum VaR and the mini-
mum CVaR portfolios for a,,, = 99% we should choose a,,,,
equal to 97.5%. The natural question arises: for which va-
lues of a,,, the value of «, . still statistically reasonable i. e.
greater than 90%. Putting . = 0.9 and solving the equa-
tion (18) with respect to o, we get a, = 0.960355. Conse-
quently, if an investor constructs his/her portfolio by minimi-
zing its VaR at a confidence level less than 0.96, then there is
no equivalent minimum CVaR portfolio at a confidence level
greater than 90%.

We are not able to use the previous results concerning
parameters A and A in practice because they depend on
unknown parameters of distribution of asset returns vec-
tor X, — p and X. Firstly, we need to estimate these parame-
ters. The most used method of the parameter estimation is the

Tab. 1: Relation between confidence levels for VaR and CVaR

under which the corresponding portfolios
with the minimal risk are equivalent

F Invesik . . POTIY. Confidence level for VaR Confidence level for CVaR
minimization, the risk aversion coefficient is equal to OICEnee S or A R E i
i 0.95 0.8745023
s 0.99 0.9742017
Brar :T ; 0.999 0.9973862
GMV

Source: Developed by the authors in program R
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historical method. Let us have a sample of previous values of
vectors of asset returns X,, X,,...X . Based on this sample, we
construct the following estimators of unknown parameters of
distribution of X :

i) EX %Z (X, ~ X, — ). (19)

1
n ;. i=!

Inserting the estimators (19) instead of unknown parame-
ters u and X in expressions for Aand A (15), (17) we get the
sample estimators of these parameters. Let us denote them
by using a symbol * ,i. e.:

sm[ ﬁ(\/ﬁfﬁ) (20)

andA =
VZ z:; Vk ] Ve

It is clear that we should interpret the estimators (20) as
random values (not as constants) because the estimators of
the parameters of distribution of the vector X, - u and X are
random values. Therefore, to get the maximum information
about the estimators of differences A and A , we should in-
vestigate their distributions.

Let us denote 0= (p', vech(X)')’ - a vector of unknown pa-
rameters and 0=(ji’,vech(X)) - a sample estimator of 0.
The operator vech is definite for an arbitrary square sym-
metric matrix A = (%) of dimension k x k and trans-
forms it onto k(k+1)/2 - dimension vector by the rule vech
(A) = (GyyseiesQpgsenes Qs a, ) . The main properties of ma-
trix operators can be found in (Harville, 2008).

Since parameters A and A can be treated as functions
of O, i.e. A=f0)and A = g@), then from the delta-method
(Brockwell and Davis, 2006) we get:

Jnlr - 10— N0.6,96,), Vnlg®) - 2(0) > N(0,G, 2G,)

where the vectors G, and G, of dimension 1xk(k+3)/2 formed
from partial derivatives of functions fand grespectively by the
vector of parameters @, i. e. G,= (0A/dp, dA/dvech( X)) and
G,=(0A, /on, 0 /ovech( X)) and the matrix @ can be found in
(Brockwell & Davis, 2006).

On the other hand, we can treat the parameters A and
A as functions of parameters of the efficient frontier R,
Voo i- €. A=f(R s)andA =f4(R

GMV? GMV? ('WV’ GMV? ('WV’S) We get

G| QG,=

= (0H/OR ) (PR r1v/08) QOR Grsy/ DO Y10V Gra1) (OV 6311108) ROV 17/ 08) +
+ (0f1/05)(85/00) (0s/08)+2(0f/ORr1)(O/OV Gaa)(OR rn/00)' OV 611/00) +
+2(0f1/ORGyv)(0f1/0s)(OR v/ 00)' Q(Os/00)+2(0f1/OV Gry)(0f1/0s)(Os/08) Q(OV G/ 00) -

Analogical equality we get also for G',QG.,,.
From (Bodnar & Schmid, 2009) we get:

(OR G/ 08)' QOR G111/ 00) =V anA1+5), (OVGun/ 00) Q(OV 11/ 00) =2 V(%MV s
(0s/00)'Q(0s/00) = 2s5(2+s) ,

(ORGry/00)' OV 6011/ 00)=(OR G111/ 00) Q(O5/00)=(05/00)' Q(OV G011/ 00)=0
Taking into account that:

(0f1/ORGumy) = (Of/ORGmy) = 0

e 7 o
@/05) = Vo [%_S . ] BT 5

PR 2 Vo
where:

%:\/ks 737\/25 -, b,”:\/ki —s\/zé -5, CA-.F( k2 —sf—(\/zé —s)g, @1)
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we are able to find asymptotic distributions of sample estima-
tors of parameters A and A . The next theorem summarizes
the previous findings.

Theorem 1. Let us form a portfolio within k assets, denoted
by X, - k-dimensional vector of asset returns included into port-
folio at time point t. Let us assume that X follows k-dimensional
normal distribution with the parameters n and X. Also, we as-
sume that s < z2 and k<n. Then for n—>co :

Vn(A=M)—L5N(0,01) and n(A,, - A, )—L>N(0,0,),
where:

2
22
> Vours“ajs ( 2\ Qi S Cps
of =————"+Vp\bs+257 | = ———"% |,

2bl\2\ bk\' 2 bl?s
2 2
ol = Gis (4s +2s7 )a%
Womr  Womr bis
1 e
Vi ,s=uRy, R=X' -2 —=
GM) 1 SRR HRH =1

a,, b, c, -are givenin (21).

In practice, we have to use the estimators of variances

o,and o, i. e.

2
2 _Vowdal s ( cina2) i S
Gf =V WS+ 257 | == ——=- |,

3
267, by 2by
A2 a2 2
63—k (4§ +2§° )‘Z—A,‘
Wormr  Yony bis

Taking into account Theorem 1.14 in DasGupta (2008) and
the proof of Theorem 1, we get that the previous estimators
for o, and o, are consistent, i. e. for n—>co :

A ~2 2
&t >otand 67 >o;.

From the result of Theorem 1, we get one- and two-sided
(1-7) confidence intervals for values of A and A :
¢ the two-sided (1-7 ) confidence interval for A:

~ O P
[A—T:Zzlﬂ 2,A+T}[’z]7w2} ;

¢ the two-sided (1-7 ) confidence interval for A :

~ G o2
A, -~z A +Ez_,0 |
ra \/— I-y/2>%ra \/_ 1-y/2 |
n

* the one-sided (1-7 ) confidence intervals for A:

~ 6y A 0
-0, A+—=z,_, |, |A———==2z_, 40|

¢ the one-sided (1-}) confidence intervals for A :

- &,
[ GOAm'F\/*ZI y} [Am_ﬁzlfyd'w} ,

where z, denotes the y quantile of the standard normal
distribution.

The constructed confidence intervals give us the possi-
bility to use statistical tests to check whether obtained values
of differences between selected characteristics of portfolios
significantly differ from some desired values. In particular, if
some confidence interval contains a zero value then a value
obtained for the corresponding estimator does not differ sig-
nificantly from zero, and therefore the corresponding portfo-
lio remains optimal under CVazR as a new risk measure. This
implies that there is no necessity in restructurization of this
portfolio.

5. Results

As noted before, an investor should interpret the esti-
mators of unknown parameters as random values. Accor-
dingly, the decision-making process based on one value of
some estimator is not efficient because in the case of con-
tinuously distributed asset returns the set of possible values
of the estimator is infinite. It is clear that the use of additio-
nal information about a random variable that reflects some
of its characteristics will lead to the improvement in the
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efficiency of the decision-making process. From the pro-
bability theory and mathematical statistics, it is known that
the maximum information about a random variable is pro-
vided by its distribution function or density. Unfortunately, it
is not always possible to obtain exact distribution or densi-
ty functions, therefore it is often suggested to consider asy-
mptotic properties of an estimator (Ling & McAleer, 2003).
The convergence of the empirical distributions obtained by
simulations to the asymptotic one depends on the prop-
erties of estimators of unknown parameters under speci-
fied assumptions about the behaviour of the asset returns
and is not always fast. We investigate the convergence rate
of empirical distributions of estimators of the parameters A
and A to the corresponding asymptotic distributions found
in Theorem 1. For this purpose, we select the daily returns
of assets from the Dow Jones Industrial Average (DJIA) list
that contains information on the prices of assets of 30 com-
panies for the period from 01 September 2017 to 31 August
2018 (a total of 252 observations). We apply the Kolmogo-
rov-Smirnov test about the normality of distribution of all
the 30 asset returns and choose only that asset for which
the null hypothesis cannot be rejected at the 5% level of
significance. We get 10 assets:
1) the Coca-Cola Company (KO, 0.210);

2) the Walt Disney Company (DIS, 0.111);

) the Boeing Company (BA, 0.158);

) Johnson & Johnson (JNJ, 0.179);

) the Goldman Sachs Group (GS, 0.604);

) Apple Inc. (AAPL, 0.151);

3
4
5
6

7) the Home Depot Inc. (HD, 0.101);

8) Verizon Communication Inc. (VZ, 0.220);

9) UnitedHealth Group (UNH, 0.343);

10) DowDuPont Inc. (DWDP, 0.758).

In brackets, we give the abbreviations of the compa-
nies’ names and the p -values of the Kolmogorov-Smirnov
test. Let us consider two cases: k =5 (the portfolio includes
5 assets: KO, DIS, BA, JNJ, GS); k& = 10 (the portfolio in-
cludes ten assets). Using selected asset returns as a sam-
ple from historical data, we estimate the parameters of the
normal distribution according to (19) and assume that the
obtained values are precise. Consequently, we obtain the
precise values of the parameters A and A :

k=5: A =0.00097598 and A =0.5665;
k=10: A =0.0029303 and A  =0.5986.

Using previous values and the results of Theorem 1, we
are able to construct the asymptotic densities of the esti-
mators of parameters A and A for k=5 and k = 10. Using
the simulation method with the number of repetitions
equal to 100,000 and for different values of sample size
n={250, 500, 1000, 2000} we provide the empirical densities
of sample estimators of the unknown parameters and esti-
mate their means and variances. The results of the simula-
tion study are presented in Fig. 1 for for estimator of A and in
Fig. 2 for estimator of A . We observe that convergence rate
of empirical distributions to asymptotic one is satisfactory

===-1=250 = = n=500

eseseeen=1000 == +n=2000 == Asymptotic

Fig. 1: Empirical and asymptotic densities of x/;(A —A) for k=5 (left) and k=10 (right) and
n = {250, 500, 1000, 2000}.
Source: Developed by the authors based on data from finance.yahoo.com in program R

-5

wemwe)=250 = = n=500 sseserr n=1000 == +n=2000 == Asymptotic

mmme=250 = = n=500 sresese n=1000 == +n=2000 == Asymptotic

Fig. 2: Empirical and asymptotic densities of '\/;(Am —A,,) for k=5 (left) and % =10 (right) and
n = {250, 500, 1000, 2000}.
Source: Developed by the authors based on data from finance.yahoo.com in program R
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for the estimator of A and unsatisfac-
tory for the estimator of A. Even for k=5
and » =2000 empirical density of sample
estimator of A is obviously asymmetric

Tab. 2: Empirical and asymptotic means and variances of v/n(A—A) and Vn(A,, -A,,)
for n= {250, 500, 1000, 2000, 3000} and k=5

and significantly biased (with respect to n=250 n=500 n=1000 | n=2000 | n=3000 | Asympt.
the precise value). It is not surorising be- ~ Mean 0.02402 | 0.01686 | 0.01194 | 0.00829 | 0.00693 0

P th )t' f th P p 9 Jn(A-A) Variance 0.000699 | 0.000529 | 0.000442 | 0.000402 | 0.000391 | 0.000356
cause 1 & properties or the random va- n(A. Ay |Mean 0.1226 | 0.0872| 0.0596 | 0.0443 |  0.0333 0
riable /VM, . that has an inverse y dis- MR = Rra) [Variance 0.1693 0.1655 0.1642 0.1619 0.1612 0.1608

tribution are better than the properties
of 72— which distribution is unknown
and the unconditional expectation does
not exist. The values of asymptotic and
empirical means and variances presen-
ted in Tables 2-3 confirm the above ob-

servations. In addition, we conclude that

Source: Developed by the authors based on data from finance.yahoo.com in program R

Tab. 3: Empirical and asymptotic means and variances of /(A —A) and \/;(Am -A,)
for n = {250, 500, 1000, 2000, 3000} and % = 10

. . th b f ts in th n=250 n=500 n=1000 n=2000 n=3000 Asympt.
increasing the number k of assets in the Jn(A—A Mean 0.05419 | 0.03765 | 0.02630 | 0.01846 | 0.01509 0
portfolio decreases the convergence n( ) [Variance 0.001987 | 0.001519 | 0.001288 | 0.001171 | 0.001150 | 0.001018
rate of th mpirical characteristi f A Mean 0.2611 0.1836 0.1296 0.0912 0.0744 0
ate of the empirical characleristics o n(A,, -A,,) Variance 0.2001 0.1899 0.1850 0.1831 0.1827 0.1803

the investigated quantities to the asym-

ptotic ones. This implies that increasing Source: Developed by the authors based on data from finance.yahoo.com in program R

the number of assets in the portfolio re-
quires a proportional increase in the size of the sample of
historical values.

Using the described simulation algorithm, we consi-
der the properties of the adjusted estimator of A . The em-
pirical and asymptotic densities of the random variable
Jn(A,, -A,,) are presented in Figure 3. We present the
empirical and asymptotic means and variances in Table 4.
The results are expected as follows: the convergence rate
of empirical variances to the asymptotic one is slightly slo-
wer than for sample estimator while the empirical means are
close to zero.

Note that using the results presented in Zabolotskyy
(2017), we are able to construct adjusted estimator of pa-
rameter A :

A n—k-2 (kz—n_k_1§+ﬂj— n—k-2 (72_n—k—1§+ﬂ)
" (n—l)l}GW, “ n-l n (n—l)l}mﬂ,va n-1 n )

Taking into account the results of the simulation study,
we conclude that it is appropriate to use
the estimator of parameter A and its
characteristics to compare the minimum
VaR and the minimum CVaR portfolios.
Moreover, in the case of a sample esti-
mator, its bias should be taken into ac-

shown by Bodnar et. al (2013) that under the condition s < 22
the inequality s < z>holds asymptotically with probability 1. It
implies that the results presented in the paper concerning the
unconditional asymptotic analysis of sample estimators of
the parameters A and A are correct.

Remark 2. All the presented results concerning the es-
timators of the parameters A and A remain correct for the
comparison of the minimum VR and the minimum CVaR
portfolios even for different confidence levels. It can be
reached by changing the corresponding quantiles in the cor-
responding expressions.

6. Conclusions

The paper examines the problem of decision-making
on the necessity of portfolio restructurization after chan-
ging the risk proxy from VaR to CVaR. Taking into account
the new standards in risk management announced by the
Basel Committee (Basel Ill) which should be finally imple-
mented in 2019 this could lead to the loss of optimality of
existing portfolios and consequently the necessity of their

Tab. 4: Empirical and asymptotic means and variances of «/;(A*m -A)

for n= {250, 500, 1000, 2000, 3000} and % = 5, 10

B : . n=250 n=500 n=1000 n=2000 n=3000 Asympt.

count, and it can be omitted by using the - Mean -0.0092 | -0.0059 | _ -0.0040 | _ -0.0047 | _ -0.0027 0
adjusted estimator A . k=5 Variance 0.16542 | 0.16371 | 0.162015 | 0.16142 | 0.16107 0.1608
Remark 1. We have noted that the k=10 Mean -0.0113 | -0.0082 [ -0.0075| -0.0030| -0.0012 0
observed results are true under the fol- - Variance 0.18945 0.18608 0.18046 0.1810 0.18097 0.18025

lowing conditions s<:2 and s<z2. It is

-1,5 -1 -0,5 0 0,5 1 L5

mmwe=250 = = n=500 crereee n=1000 == +n=2000 == Asymptotic

Source: Developed by the authors based on data from finance.yahoo.com in program R

-2 1,5 -1 -0,5 0 0,5 1 15

wmwe=250 = = n=500 +er+r+*n=1000 == +n=2000 == Asymptotic

Fig. 3: Empirical and asymptotic densities of \/n(A" —A,,) for k=5 (left) and k=10 (right) and
n = {250, 500, 1000, 2000}.
Source: Developed by the authors based on data from finance.yahoo.com in program R
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restructurization. The portfolio restructurization process is
rather costly, both in terms of financial costs and in time
consuming. That is why the actual problem is to explore the
tools that confirm the necessity of portfolio restructuriza-
tion and the rationale of investing resources in this process.
On the other hand, these tools give the possibility to decide
that changes in portfolio characteristics are not significant
and there is no need for portfolio restructurization that will
save resources.

In the paper, the difference between the main charac-
teristics of the minimum VzR and the minimum CVaR portfo-
lios is calculated and appropriate sample estimates of these
indicators are constructed. Taking into consideration that
sample estimators are random variables, we investigate the
probabilistic properties of the estimators of the differences
between the main characteristics of the minimum VaR and
the minimum CVaR portfolios. We find the asymptotic dis-
tributions of these estimators and justify the correctness of
the use of sample estimators of the asymptotic variances for
these distributions. Based on the constructed distributions,
we develop a toolkit for testing the significance of value of
differences between the considered characteristics of the
minimum VaR and the minimum CVaR portfolios. By means of
a simulation study, we show that both sample estimators are
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