Portfolio optimization using the GO-GARCH model: evidence from Ukrainian Stock Exchange

Economic Annals-ХХI: Volume 160, Issue 7-8, Pages: 116-120

Citation information:
Matsuk, Z., Deari, F., & Lakshina, V. (2016). Portfolio optimization using the GO-GARCH model: evidence from Ukrainian Stock Exchange. Economic Annals-XXI, 160(7-8), 116-120. doi: https://doi.org/10.21003/ea.V160-23


Zoriana Matsuk
PhD (Economics),
Associate Professor,
Ivano-Frankivsk National Technical University of Oil and Gas
15 Karpatska Str., Ivano-Frankivsk, 76000, Ukraine
zoriana_01@yahoo.com

Fitim Deari
PhD (Finance and Accounting),
Assistant Professor,
South East European University
335 Ilindenska Str., Tetovo, 1200, Republic of Macedonia
f.deari@seeu.edu.mk

Valeriya Lakshina
PhD Student,
Senior Lecturer,
National Research University
Higher School of Economics
20 Miasnitskaya Str., Moscow, 101000, Russia
vlakshina@hse.ru

Portfolio optimization using the GO-GARCH model: evidence from Ukrainian Stock Exchange

Abstract. This paper provides an experimental study on optimal portfolio composition. Data on seven stocks, included in Ukrainian Exchange Index, for the period from January to December 2015 are considered. In total, seven big industrial, electric and military companies are selected from the Ukrainian Exchange: Avdiivka Coke Plant, PJSC; Azovstal Iron and Steel Works, PJSC; Raiffeisen Bank Aval, JSC; Centerenergo, PJSC; Donbasenergo, PJSC; Motor Sich, JSC; and Ukrnafta, OPJC. The sample amounts to 226 observations.

The analysis covers descriptive statistics, correlation, and, finally, optimal investment weights, which are calculated using Sharpe ratio. Covariance matrix of returns is estimated by means of generalized orthogonal GARCH model with Gaussian and normal-inverse Gaussian distributions for errors. Selected stocks during the considered period have on average negative rates of returns. At the same time, these stocks in most of cases are positively correlated with each other, leading hence to a fewer room for the efficient diversification. Both Gaussian and normal-inverse Gaussian portfolios preclude that on average investment weights one should be focused mainly on Centerenergo and Motor Sich stocks. Based on these results, the investor should buy 46% of Centerenergo’s stocks and 34% of Motor Sich’s stocks.

Selected stocks during the considered period have on average negative rates of returns. At the same time, these stocks in most of cases are positively correlated with each other, leading hence to a fewer room for the efficient diversification.

Despite this, our results denoted that implementation of multivariate GARCH together with normal-inverse Gaussian distribution for errors enables to reduce the portfolio risk substantially. Comparing optimal GO-GARCH portfolios with naїve portfolio with all weights equal and Ukrainian Exchange Index we demonstrate that the former provide smaller portfolio variance and better VaR than naїve portfolio and the Index.

Keywords: Portfolio; GO-GARCH Model; Return; Risk; Optimizations; Stock Exchange

JEL Classіfіcatіon: G11; C58

Acknowledgement. This paper has been prepared under financial support of Ukrainian Stock Exchange.

DOI: https://doi.org/10.21003/ea.V160-23

References

  1. Markowitz, H. M. (1952). Portfolio Selection, The Journal of Finance, 7(1), 77-91.
    doi: http://dx.doi.org/10.1111/j.1540-6261.1952.tb01525.x
  2. Sharpe, W. F. (1963). A Simplified Model of Portfolio Analysis, Management Science, 9(2), 277-293.
    doi: http://dx.doi.org/10.1287/mnsc.9.2.277
  3. Tobin, J. (1985). The Private and Public Pension Systems in Relation to Saving, Investment and Growth. In R. F. DeMong, W. S. Gray, III, & R. D. Milne (Eds.), Broader Perspectives on the Interest of Pension Plan Participants (pp. 18-23). Charlottesville, Virginia: The Financial Analysts Research Foundation.
  4. Markowitz, H. (1959). Portfolio Selection: Efficient Diversification of Investment.  New York: John Wiley & Sons.
  5. Sharpe, W. F. (1964). Capital Asset Prices: A Theory of Market Equilibrium. The Journal of Finance, 19(3), 425-442.
    doi: http://dx.doi.org/10.1111/j.1540-6261.1964.tb02865.x
  6. Lintner, J. (1965). The Valuation of Risk Assets and the Selection of Risky Investment in Stock Portfolio and Capital Budgets. The Review of Economics and Statistics, 47(1), 13-37.
    Retrieved from https://www.jstor.org/stable/1924119?seq=1#page_scan_tab_contents
  7. Mossin, J. (1966). Equilibrium in a Capital Market. Econometrica, 34(4), 768-783.
    Retrieved from http://www.jstor.org/stable/1910098
  8. Ross, S. A. (1976). The Arbitrage Theory of Capital Asset Pricing. Journal of Economic Theory, 13(3), 341-360.
    doi: http://dx.doi.org/10.1016/0022-0531(76)90046-6
  9. Danielsson, J., Jorgensen, B. N., Vries de, C. G. et al. (2008).Optimal portfolio allocation under the probabilistic VaR constraint and incentives for financial innovation. Annals of Finance, 4, 345.
    doi: http://dx.doi.org/10.1007/s10436-007-0081-3
  10. Fernandes, B.,  Street, A., Valladao, & D., Fernandes, C. (2016). An adaptive robust portfolio optimization model with loss constraints based on data-driven polyhedral uncertainty sets. European Journal of Operational Research,255(3), 961-970.
    doi: http://dx.doi.org/10.1016/j.ejor.2016.05.038
  11. Rankovic, V., Drenovak, M., Urosevic, B., & Jelic, R. (2016). Mean-univariate GARCH VaR portfolio optimization: Actual portfolio approach. Computers & Operations Research, 72, 83-92.
    doi: http://dx.doi.org/10.1016/j.cor.2016.01.014
  12. Mei, X., DeMiguel, V., & Nogales, F. J. (2016). Multiperiod portfolio optimization with multiple risky assets and general transaction costs. Journal of Banking & Finance, 69, 108-120.
    doi: http://dx.doi.org/10.1016/j.jbankfin.2016.04.002
  13. Luo, C., Seco, L., & Bill Wu, L.-L. (2015). Portfolio optimization in hedge funds by OGARCH and Markov Switching Model. Omega, 57, Part A, 34-39.
    doi: http://dx.doi.org/10.1016/j.omega.2015.01.021
  14. Vercher, E., & Bermudez D. J. (2015). Portfolio optimization using a credibility mean-absolute semi-deviation model. Expert Systems with Applications, 42(20), 7121-7131.
    doi: http://dx.doi.org/10.1016/j.eswa.2015.05.020
  15. Mainik, G., Mitov, G., & Ruschendorf, L. (2015). Portfolio optimization for heavy-tailed assets: Extreme Risk Index vs. Markowitz. Journal of Empirical Finance, 32, 115-134.
    doi: http://dx.doi.org/10.1016/j.jempfin.2015.03.003
  16. List of the UX Index constituent stocks (2016). Official web-site.
    Retrieved from http://fs.ux.ua/files/81 (in Ukr.)
  17. Sharpe, W. F. (1966). Mutual fund performance. The Journal of business, 39(1),119-138.
    doi: http://dx.doi.org/10.1086/294846
  18. Weider Van der, R. (2002). GO-GARCH: a multivariate generalized orthogonal GARCH model. Journal of Applied Econometrics, 17(5), 549-564.
    doi: http://dx.doi.org/10.1002/jae.688
  19. Zivot, E. (2013). Portfolio Theory with Matrix Algebra.
    Retrieved from http://faculty.washington.edu/ezivot/econ424/portfolioTheoryMatrix.pdf
  20. Engle, R. F., & Kroner, K. F. (1995). Multivariate simultaneous generalized ARCH. Econometric theory, 11(1), 122-150.
    Retrieved from https://www.jstor.org/stable/3532933?seq=1#page_scan_tab_contents
  21. Feller, W. (2008). An introduction to probability theory and its applications. Vol. 2. New York: John Wiley & Sons.
  22. Harvey, C. R., & Siddique, A. (2000). Conditional skewness in asset pricing tests. The Journal of Finance, 55(3), 1263-1295.
    doi: http://dx.doi.org/10.1111/0022-1082.00247
  23. Oigard, T. A., Hanssen, A., Hansen, R. E., & Godtliebsen, F. (2005). EM-estimation and modeling of heavy-tailed processes with the multivariate normal inverse Gaussian distribution. Signal Processing, 85(8), 1655-1673.
    doi: http://dx.doi.org/10.1016/j.sigpro.2005.03.005
  24. Ukrainian Exchange (2016). Official web-site.
    Retrieved from http://www.ux.ua (in Ukr.)
  25. Damodaran, A. (1996). Corporate finance. New York: John Wiley & Sons.
  26. International bonds: Ukraine (2016). Official web-site.
    Retrieved from http://cbonds.com/emissions/issue/175919 (in Russ.)
  27. JP Morgan Chase (1996). RiskMetricsTM – Technical Document. (4th ed.).
    Retrieved from https://www.msci.com/documents/10199/5915b101-4206-4ba0-aee2-3449d5c7e95a

Received 28.04.2016